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Abstract

Deep learning has been proven to be effective for
classification problems. However, the majority of
previous works trained classifiers by considering
only class label information and ignoring the local
information from the spatial distribution of train-
ing samples. In this paper, we propose a deep
learning framework that considers both class la-
bel information and local spatial distribution infor-
mation between training samples. A two-channel
network with shared weights is used to measure
the local distribution. The classification perfor-
mance can be improved with more detailed infor-
mation provided by the local distribution, partic-
ularly when the training samples are insufficient.
Additionally, the class label information can help to
learn better feature representations compared with
other feature learning methods that use only local
distribution information between samples. The lo-
cal distribution constraint between sample pairs can
also be viewed as a regularization of the network,
which can efficiently prevent the overfitting prob-
lem. Extensive experiments are conducted on sev-
eral benchmark image classification datasets, and
the results demonstrate the effectiveness of our pro-
posed method.

1 Introduction

Classification is one important branch of machine learn-
ing. Various machine learning algorithms have been pro-
posed to improve the classification performance, e.g., support
vector machines (SVMs) [Suykens and Vandewalle, 1999;
Vapnik and Vapnik, 1998], random forest [Breiman, 20011,
and Bayes [Russell et al., 1995]. However, the classifica-
tion performance is limited by the feature representation used
for the classifier. Some hand-crafted features, such as SIFT
[Lowe, 2004] and HOG [Dalal and Triggs, 20051, have been
proposed to address this issue. Unfortunately, the capac-
ity of hand-crafted features is still unsatisfactory. In recent
years, deep learning has achieved excellent classification per-
formance on various applications with a strong feature rep-
resentation learning ability, such as MNIST [LeCun et al.,
1998], CIFAR [Krizhevsky and Hinton, 2009], and even the
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Figure 1: Illustration of the network architecture. The network used
in this paper has two channels with shared weights. Two softmax
losses are followed separately on top of the two channels, and our
proposed pairwise loss is added to one particular layer as a regular-
ization of the local distribution. Randomly selected pairs are fed into
the network, and the parameters are updated.

large-scale dataset ImageNet [Krizhevsky et al., 2012]. Previ-
ous deep classification networks trained classification models
by only utilizing the class labels of training data, measured
by the softmax loss on the output layer. They ignored the lo-
cal distribution information between training samples. Soft-
max loss focuses on whether one training sample is correctly
classified. However, the local distribution between samples
can provide more information. For example, similar train-
ing samples should have similar high-level feature represen-
tations, whereas the feature representations of dissimilar sam-
ples should differ from each other.

Considering this problem, we propose a pairwise loss
between similar and dissimilar sample pairs to constrain
the network for improving the classification performance.
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Specifically, we construct a two-channel network with shared
weights, and each network has its own softmax loss, which
is shown in Figure 1. The proposed pairwise loss is added
to one particular layer as a constraint of the learned feature
representation. With this pairwise feature representation con-
straint, the classification performance can be improved. We
will show that the contrastive loss used in the siamese net-
work [Hadsell ez al., 2006] is a special case of the proposed
pairwise loss. The constraint of contrastive loss is too strong
and thus may be unsuitable for real-world problems.

Pairwise constraints between samples are generally used
to learn a distance metric. Distance metric learning has been
applied to many machine learning problems, such as classi-
fication [Weinberger et al., 2006; Jin et al., 2009], clustering
[Yeung and Chang, 2007], and retrieval [Hoi et al., 2010].
It aims to learn a transformation of the original feature, af-
ter which the distance between samples can be better esti-
mated. However, the performance of distance metric learn-
ing is restricted due to the limitation of the feature repre-
sentation and the ability of transformation. Considering its
ability to learn high-level feature representations, deep learn-
ing has been used for distance metric learning. Hadsell et
al. proposed a two-channel network (siamese network) with
a contrastive loss for dimensionality reduction by learning
an invariant mapping [Hadsell et al., 2006]. It relies solely
on the neighborhood relationship to form the pairwise con-
straints. Considering the success of the siamese network, sev-
eral works have followed this network architecture and also
adopted the contrastive loss to address related problems. For
example, Hyun et al. proposed a deep metric learning using
lifted structured feature embedding [Oh Song et al., 2016].
Zagoruyko and Komodakis used a two-channel network to
compare the similarity between image patches [Zagoruyko
and Komodakis, 2015]. Sun et al. proposed a similar net-
work architecture to learn face recognition neural networks
[Sun et al., 2015]. This paper also reported that the loss of
identification (classification) helped to improve the feature
learning for verification. However, it did not discuss how
the feature learning affected the classification performance.
Similar to pairwise constraints, some deep metric learning
methods use triplets as constraints to learn high-level fea-
ture representations [Cheng et al., 2016; Schroff et al., 2015;
Hoffer and Ailon, 2015]. All these metric learning works fo-
cus on the neighborhood relationship and ignore the informa-
tion directly provided by the class labels, which means that
the procedure of composing similar or dissimilar pairs using
labels may cause the loss of useful information. In this pa-
per, we use the softmax loss to improve the performance of
feature representation.

Overfitting is always a large issue in the training of deep ar-
chitectures, particularly when the number of training samples
is insufficient. Our proposed two-channel network can effec-
tively prevent the overfitting problem and achieve promising
results when the number of training samples is small. The
reason is that the proposed pairwise loss can be viewed as
a regularization of the network, which prevents the model
from focusing on the label information too much. This will
be demonstrated in the experiments.

The remainder of this paper is organized as follows. In
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Section 2, we present a detailed introduction to our proposed
pairwise loss and the proposed two-channel joint learning
network. Section 3 reports and analyzes various experimen-
tal results to demonstrate the effectiveness of our proposed
method. Conclusions are presented in Section 4.

2 C(lassification and Representation Joint
Learning

In this section, we provide a detailed introduction to our pro-
posed joint learning of classification and representation. We
first introduce the proposed pairwise loss and perform a com-
parison between our proposed pairwise loss and the com-
monly used contrastive loss. Then, the network architecture
of combining classification and local distribution information
is introduced. The stochastic gradient decent method is used
to update the parameters of the network, and the updating al-
gorithm is provided at the end of this section.

2.1 Proposed Pairwise Constraints
In this paper, the neighborhood relationships between sam-
ple pairs are used to obtain the local distribution information.
Suppose that x; and x; are two input training samples in a
d-dimensional feature space R. Y;; indicates the similarity
between x; and x;, and it is defined as
{ 1, x; and z; are similar;
Yi; = o
—1, x; and x; are dissimilar.

‘We can obtain the similarity between samples through class
labels: two samples that have the same class label are similar,
and two samples that have different class labels are dissimilar.
Denote the square of the Euclidean distance between x; and
x; on the output manifold as follows:

Dj (s, 5,0) = || f*(xil6) — f*(;10)|13, (1)
where f*(z;]0) indicates the output of the network on the k-
th layer under parameters 6 with input ;.

The main idea of the local distribution constraint is to learn
anonlinear mapping that maps similar input vectors to nearby
points and dissimilar ones to distant points on the output man-
ifold. Previous deep metric learning methods mainly used
contrastive loss to achieve this goal. In this paper, we pro-
pose a pairwise loss that is motivated mainly by regularized
distance metric learning [Jin et al., 2009]. Our proposed pair-
wise loss is more flexible than contrastive loss, which can be
viewed as a special case of our pairwise loss. The explicit
loss function can be formulated as follows:
PLoss(zi,x;,0,k) = max(0,b — Y;;(m — Di(z;, z;, 0)()2),

)
where b and m are two parameters and 0 < b < m. Our pro-
posed loss can guarantee that samples belonging to the same
class are clustered and that the distance between dissimilar
pairs is larger than the distance between similar pairs plus a
margin. For a better understanding of the loss, it can be refor-
mulated as follows:

Yi; +1 2
PLoss(x;,xj,0,k) = ———max(0,b — m + Dj(z;,2;,0))

1-Y;,
+ T”max(O,b—F m — Di(zi,2,0)).

3)
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Figure 2: Comparison between our proposed pairwise loss and the contrastive loss. The figure in the middle shows the original data distri-
bution. (a) Shows the results after the training with contrastive learning. (b) Shows the results after the training using the proposed pairwise

loss.

The contrastive loss of the siamese network can be viewed
as a special case when setting the parameters of our pairwise

loss as b = m and m = %¢, i.e.,

Yi; +1

PLoss(xi,xj,0,k) = max(0, D} (z;,24,0))

1
7}/ij+].

2
1—

Di(wi,;,6)

Y,
+ —%maz(0,m. — D} (x;, z;,0)),

2
“)
where m,. is the margin of the contrastive loss function. The
contrastive loss penalizes all similar pairs with a distance
larger than zero. This constraint is too strong. It is more
reasonable that the distance between similar pairs is a range
within a margin rather than being zero. The comparison be-
tween our proposed pairwise loss and the contrastive loss is
presented in Figure 2. In this figure, there are two classes of
training samples, three blue circles and two green squares. In
the original feature space, the distance between the samples in
the same classes is larger than the distance between samples
from different classes. After the training with our pairwise
loss, the distance between similar pairs will be smaller than
a margin m — b, and the distance between dissimilar pairs
will be larger than m + b. For contrastive loss, it is a special
case of pairwise loss when b = m. In this case, the distance
between similar pairs is constrained to be zero, which is too

strong for real-world problems.

2.2 Network Architecture for Classification and
Representation Joint Learning

To combine the information of class labels and the pairwise
loss, we propose a two-channel network, as illustrated in Fig-
ure 1. This network has two types of loss functions: softmax
loss on top of the network and pairwise loss constraints added
to one particular layer. The softmax loss directly utilizes the
information from the class labels, while the pairwise loss con-
tributes to the local distribution. Note that the pairwise loss
does not need to be added on top of the network. It can also be
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— Y
T ijam(o, 2m — Di(x;,x;,0))

added on other layers. Suppose that we have a dataset  that
consists of N samples from M different classes; the softmax
loss can be formulated as follows:

M
CLoss(z',W,y;) = — Z Hy; == t}ogp;
= (5)

T i
ewyia:

= —lngyl = —logW,
where ' is the output of the network corresponding to train-
ing sample z;. 1{y; == ¢t} is an indicator function. If
y; == t is true (the class label of x; is t), then the result
is 1; otherwise, the result is 0. p; is the predicted probabil-
ity. W is the parameters of the softmax layer, and W, is the
weight of the ¢-th output, t =1,--- | M.

By combing the softmax loss and the pairwise loss, the fi-
nal optimization problem can be formulated as

N
2 ,
L=———— g CLoss(x', W1, y;
NN —1) m.:l( (W) (©6)

+ CLoss(z?, Wy,y;) + APLoss(z;,z,0,k)),

where A > 0 is one trade-off parameter. W; and Ws are pa-
rameters of the two softmax losses. The two softmax losses
have the same loss weight to guarantee the symmetry of the
network. If only one softmax is added or the loss weights are
different, then the two samples of the input pairs are treated
unfairly, which may lead to a decrease in the performance.
For softmax loss, the pairwise loss can be viewed as a regular-
ization on the feature representation using local distribution
information. It can be viewed as an indirect regularization on
the parameters of the network. Consequently, it can prevent
the network from overfitting. Furthermore, the local distribu-
tion information can also help improve the classification per-
formance by providing more specific local distribution infor-
mation. Additionally, it is slow and difficult for our proposed
pairwise loss or contrastive loss to converge to a promising
solution with random selection of training pairs. There are
mainly two reasons. First, feeding all training pairs into the
network requires too much time because of the large amount
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Algorithm 1 Parameter updating algorithm of our proposed co-learning network

Input: Input data set y = {(z;, yi)}fil, initializing the parameters of the network, learning rate ¢, parameters b and m.

Output: Parameters of the network.
1: while (not converge) do

2:  Randomly select a pair of training samples (x;,y;) and (z;, ;).
_ dCLoss(x' ,W1,y:)
3 VI = T
4: VWQ _ acLOSS(‘i‘:;WQ,y]‘)
k _ OPLoss(xi,x;,0,k) AC Loss(x' ,W1,y;)
o VIH@il0k) = =grtay T o wlag
OPLoss(xi,x;,0,k 8C Loss(z? ,Wa, 5
6: VfH(l0k) = 3f’“(($j|9k) Lt 8fk((wj|9k§ =
k(. k(g
T VO = Vi (a|0) x 2SO 7 a0y x 2Ll
8: Update W1 = W1 — 6VW1, W2 = WQ - EVWQ, gk = Gk - eVGk
9: end while

of possible pairs. Second, the learning rate used for the pair-
wise loss is generally small. However, the softmax loss does
not have such drawbacks, which can help the pairwise loss
converge faster and obtain a better solution. Consequently,
the performance of feature representation can be improved.

We use the stochastic gradient decent method to update the
parameters of the network. The learning algorithm is pre-
sented in Algorithm 1.

3 Experiments

To evaluate the effectiveness of our proposed method, we
conduct various experiments on three benchmark datasets:
MNIST, SVHN, and CIFAR10. All experiments are imple-
mented using the CAFFE deep learning framework [Jia et al.,
2014]. The first dataset used in our experiment is MNIST,
which consists of a training set of 60000 28 x 28 handwrit-
ten digits of 10 classes and a test set of 10000 samples. The
second dataset is the Street View House Numbers (SVHN),
which consists of over 600000 32 x 32 color images of house
number digits 0-9. This dataset is split into 73257 digits for
training, 26032 digits for testing, and 531131 extra training
digits that are less difficult to recognize. Note that the extra
training digits are not used in any experiment in this paper.
The third dataset used in our experiment is CIFAR10, which
consists of 60000 32 x 32 color images from 10 classes. This
dataset is split into 50000 training samples and 10000 test
samples.

We compare our proposed method with several baselines.
The first is the siamese network (siamese) with contrastive
loss. The architecture of the siamese network is also a two-
channel network but with only contrastive loss. The second is
our pairwise loss (pairloss), which is supposed to have better
performance than the siamese network. In the experiments,
we randomly sample two batches of training samples into the
two branches of the network and use the contrastive loss or
pairwise loss on the top. The purpose of these two methods
is to learn a high-level feature representation using pairwise
constraints, and then a classifier (KNN or SVM) is applied
on these features. The third method is to use softmax loss
to improve the performance of pairwise loss (pair-soft). This
will demonstrate that classification loss can derive better fea-
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ture representation learning. The fourth method is the nor-
mal single-channel network with a softmax layer on the top
to perform classification (singlenet). The final method is to
combine the pairwise loss with softmax loss to improve the
classification performance (pairnet), which will demonstrate
that the local distribution information can provide more spe-
cific information than only using labels directly. The specific
layer and parameter settings for each dataset are introduced
in their own experiments.

3.1 MNIST Dataset

In this section, we present experimental details and the re-
sults on MNIST datasets. We use LeNet to conduct all exper-
iments on MNIST. LeNet consists of 2 convolutional layers,
and both of these layers are followed by a 2 x 2 max-pooling
layers. Then, two fully connected layers are followed. The
only preprocessing of the data is a global normalization that
normalizes the pixel values of the image to 0-1. To train the
models, we randomly select different numbers (60, 100, 500,
and 1000 samples for each class) of training samples from
the training set. We also train the model by using all train-
ing samples in the training set (denoted as “ALL”). All ran-
dom selections are repeated three times to avoid randomness.
A KNN classifier is applied on the learned features via con-
trastive loss, pairwise loss and pair-soft loss. The experimen-
tal results are summarized in Table 1.

From the results in Table 1, we can conclude that our
pairwise loss outperforms the contrastive loss with different
amounts of training samples. Comparing the results between
pairloss and pair-soft, it is clear that the softmax loss helps to
improve the performance of the pairwise loss, which means
that a better feature representation is learned. The pairnet per-
forms considerably better than singlenet, particularly when
the number of training samples is small, which demonstrates
the effectiveness of the combination of pairwise loss and soft-
max loss. When the number of training samples is small,
the information provided directly by the class label is limited.
However, the pairwise constraints can provide more informa-
tion about the feature distribution, leading to better classifica-
tion performance.

We conduct another experiment to verify the feature rep-
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Table 1: Classification performance on MNIST dataset corresponding to different amounts of training samples.

Methods ALL 10000 5000 1000 600
siamese | 0.9731 0.9715 £ 0.0017 0.9674 £ 0.0026 0.9379 £+ 0.0054 0.9171 £ 0.0029
pairloss | 0.9795 0.9791 £ 0.0003 0.9753 £ 0.0022 0.9432 £ 0.0062 0.9257 £ 0.0043
pair-soft | 0.9908 0.9864 £ 0.0007 0.9824 £ 0.0008 0.9630 +£0.0044 | 0.9517 4+ 0.0037
singlenet | 0.9892 0.9820 £ 0.0022 0.9739 £ 0.0029 0.9397 £+ 0.0064 0.9247 £ 0.0116
pairnet | 0.9917 | 0.9875 &+ 0.0007 | 0.9834 £ 0.0001 | 0.9637 4+ 0.0019 | 0.9510 & 0.0057

(a) b=0,m=1

(b) b=0.5,m=1

(a) b=1,m=1

Figure 3: Test sample clustering results with different parameters on MNIST dataset.

resentation learning ability of our proposed pairwise loss and
analyze the effects of the parameters by visualizing the fea-
tures in 2-D space. We add another fully connected layer on
top of the network and set the output dimensionality as 2.
The pairwise loss is used to learn feature representations by
setting the parameter b to 0,0.5, and 1. The final results are
shown in Figure 3. Each of the sub-figures has 10 clusters
corresponding to digits 0-9. In the illustration of Figure 2, we
can observe that when the parameter b is set to smaller val-
ues, the circle that constrains the similar pairs will be larger.
This result means that the size of the clusters is larger. From
the results presented in Figure 3, we can observe that the size
of the cluster decreases with the value of parameter b varying
from 0-1. When the value of b is set to 1, which is equal to
parameter m, this can be viewed as contrastive loss used in
the siamese network.

3.2 SVHN Dataset

In this section, we conduct experiments on the SVHN dataset.
The network architecture used for the SVHN dataset consists
of 3 convolutional layers, and each of them is followed by a
max-pooling layer. ReLU non-linearity is applied between
two convolutional layers. Two fully connected layers are
added after the convolutional layers. Note that the extra train-
ing dataset is not used in our experiments. We preprocess the
images using local contrast normalization [Zeiler and Fergus,
2013] due to the large variety of colors and brightness vari-
ations in the images. After the local contrast normalization,
we crop the image into a 28 x 28 patch that is located in the
center of the image. No data augmentation is applied in our
experiments. To train the models, we randomly select differ-
ent numbers (2000 and 500 samples for each class) of train-
ing samples from the training set. We also train the model
by using all training samples in the training set (denoted as
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Table 2: Classification performance on the SVHN dataset corre-
sponding to different amounts of training samples.

Methods | ALL 20000 5000
siamese | 0.8886 | 0.8730 £ 0.0010 | 0.7887 £ 0.0109
pairloss | 0.8998 | 0.8779 £0.0038 | 0.8112 £ 0.0172
pairsoft | 0080 | 0.8934 £0.0000 | 0.8552 £ 0.0010

[ singlenet | 09219 | 0.8855 £ 0.0006 | 0.8426 £ 0.0081 |

[ paimet | 0.9387 | 0.9171 F 0.0014 | 0.8876 & 0.0010 |

Table 3: Classification performance on the CIFAR10 dataset corre-
sponding to different amounts of training samples.

Methods ALL 10000 5000
siamese-soft 0.805 0.7286 4+ 0.0145 0.6677 £+ 0.0338
pair-soft 0.8259 0.7430 £+ 0.0075 0.6789 £ 0.0254
[ singlenet [ 0.8374 [ 0.7357 4+ 0.0022 [ 0.6671 £ 0.0095 ]

| pairmet | 0.8609 | 0.7612 £ 0.0107 | 0.7055 £ 0.0002 |

“ALL”). All random procedures are repeated three times, and
the average performance is reported to avoid randomness. A
KNN classifier is applied on the learned features. The results
are shown in Table 2.

From Table 2, we can obtain conclusions similar to those
from the experiments on the MNIST dataset. The pairwise
loss and the softmax loss help to improve the performance
of each other consistently. The improvement is particularly
obvious when the amount of training samples is small. Addi-
tionally, we present results to demonstrate the ability of our
proposed method to prevent overfitting in Figure 4 and Figure
5. We randomly select 500 samples from each class and use
the same network as used in the above experiments on SVHN.
We compare the proposed pairnet with singlenet to verify its
ability to prevent overfitting. Note that the same weight decay
is used for these two networks. From Figure 4 and Figure 5,
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singlenet loss
pairnet loss.
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Figure 4: The training loss comparison between singlenet and pair-
net.
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Figure 5: The test loss comparison between singlenet and pairnet.

we can conclude that the training loss of singlenet decreases
quickly to a value of approximately zero. However, the test
loss of singlenet increases after a certain training iteration,
which means an overfitting training process. Our pairnet can
effectively prevent the overfitting problem with the regular-
ization via pairwise loss on the feature representation.

3.3 CIFAR10 Dataset

We also conduct experiments on the CIFAR10 dataset. This
dataset is more difficult than the MNIST dataset and the
SVHN dataset. Consequently, the architecture of the network
used for training CIFAR10 is more complex. We adopt a net-
work similar to that used in [Hoffer and Ailon, 2015], which
consists of 4 convolutional layers and 1 fully connected layer.
Each of the first three convolutional layers is followed by a
max-pooling layer. A ReLU layer is applied between two
consecutive layers. Finally, a softmax layer is added on the
top of the network for classification. The images are prepro-
cessed by performing global contrast normalization as used
for the SVHN dataset. Then, ZCA whitening is performed,
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which makes the pixels less correlated with each other and
have the same variances [Srivastava er al., 2014]. Note that
the training of the network converges slowly if we use only
contrastive loss or pairwise loss, which mainly has two rea-
sons. First, CIFAR10 is more difficult, and the network ar-
chitecture is more complicated. Second, the number of pairs
in our model in each batch is small due to the storage lim-
itations of the GPU. Consequently, we do not compare the
performance of contrastive loss and pairwise loss. Rather, we
add a softmax loss on top of the siamese network (siamese-
soft) and compare its performance with the other methods.
We first compare the performance using all the training data
and then randomly select 1000 and 500 samples from each
class as the training set to compare the performance of all the
methods. Each random selection is repeated three times to
avoid randomness. The results are shown in Table 3.

Note that SVM is used to classify the learned features of
siamese-soft and pair-soft. From the results presented in Ta-
ble 3, we can conclude that our proposed pairnet outperforms
the other methods. The contrastive loss and pairwise loss con-
verge faster through training with a softmax loss, and both of
the methods can obtain performance comparable to that of
singlenet.

4 Conclusions

In this paper, we propose a deep network architecture to
learn classification and feature representation simultaneously,
which can enhance the performance of each other. A pair-
wise loss is proposed to constrain the feature representation
learning. Then, we propose a two-channel network with the
proposed pairwise loss as a regularization of the feature dis-
tribution. The classification performance can be improved
with this regularization. Additionally, the softmax loss used
in classification can also help to learn better feature repre-
sentations. The pairwise loss can be viewed as an indirect
regularization on the weights of the network, which prevents
overfitting when the training samples are insufficient. Exten-
sive experiments are conducted on three benchmark datasets,
and the experimental results demonstrate the effectiveness of
our proposed method.
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